2016学年南京市东庐初级中学八年级数学导学案:9.5《三角形、梯形的中位线》(新版 苏科版下册)

来源:本站2019-06-2112 次

2016学年南京市东庐初级中学八年级数学导学案:9.5《三角形、梯形的中位线》(新版 苏科版下册)

三角形、梯形的中位线学习目标:1.掌握三角形的中位线的概念、性质;会利用三角形中位线的性质解决有关问题2.经历探索三角形中位线性质的探索过程,发展观察能力及抽象思维能力;体会转化的思想方法.学习重点:探索并掌握三角形中位线的性质.学习难点:运用转化思想解决有关问题.一、学前准备:(1)如图,在桃花潭的两侧有两棵树A、B,小亮对小明提出一个问题:“小明,旁边这棵桃树A和对岸的桃树B相距多远?”小明立即回答:“可以这样:在潭边找到可以直接到达A、B两点的一个恰当的点O,用皮尺连接AO、BO,并分别延长到点C和点D,使AO=OC,BO=OD.用皮尺测量出CD的长就可以知道AB的长了.”小明边说边在地上画出了示意图(如图1),亲爱的同学们,你说小明的测量方案正确吗?有依据吗?【答案】正确,全等三角形的对应边相等(2)小亮对小明说,“你的测量方案可行,但我还有一种简便的方法.”“我不需要延长AO、BO,只要用皮尺找到他们的中点M和N,用皮尺量出MN的长度我就可以知道A、B两点间的距离了”.(如图2)亲爱的同学们,你知道小亮要说的是什么吗?他的测量方案正确吗?【答案】正确,三角形的中位线等于第三边的一边二、探究活动:(一)、独立思考·解决问题1.动手操作(1)剪一个三角形,记为△ABC;(2)分别取AB、AC的中点D、E,连接DE;(3)沿DE将△ABC剪成两部分,将△ADE绕点E按顺时针旋转180°到△CFE的位置,得四边形BCFD,如图1观察思考:四边形BCFD是平行四边形吗?请说明理由.【答案】是∵旋转∴△ADE≌△CFE∴AD=CF,∠A=∠ECF∵∠A=∠ECF∴AD∥FC∵D是AB的中点∴AD=DB∴DB=CF∵AD∥FC且DB=CF∴四边形BCFD是平行四边形.2.叫做三角形的中位线如图,DE是△ABC的中位线.DE与BC有怎样的位置关系和数量关系?为什么?【答案】连结三角形两边中点的线段叫做三角形的中位线.DE∥BC且DE=BC由第1题的证明可得到DF=BC,DF∥BC,即DE∥BC又∵DE=DF∴DE=BC结论:三角形的中位线.即:若AD=DB、AE=EC,则DE∥BC且DE=BC【答案】三角形的中位线等于第三边的一边3.说一说三角形的中线与三角形的中位线的区别如图:【答案】中位线是三角形中两边中点的连线。 中线是一个角与它所对的边的中点的连线(1)DE=5,BC=.(2)AC=8,∠C=70°,DF=,∠EDF=.(3)若△DEF的周长为10cm,△ABC的周长是;若△ABC的面积等于20cm,△DEF的面积是.【答案】10;4,70°;20cm,5cm。

  • A+
所属分类:儿童文学